
A Prototype Implementation of MPI for

SMARTMAP

Ron Brightwell

Sandia National Laboratories⋆

Scalable System Software Department
Albuquerque, NM USA
rbbrigh@sandia.gov

Abstract. Recently the Catamount lightweight kernel was extended to
support direct access shared memory between processes running on the
same compute node. This extension, called SMARTMAP, allows each
process read/write access to another process’ memory by extending the
virtual address mapping. Simple virtual address bit manipulation can
be used to access the same virtual address in a different process’ ad-
dress space. This paper describes a prototype implementation of MPI
that uses SMARTMAP for intra-node message passing. SMARTMAP
has several advantages over POSIX shared memory techniques for im-
plementing MPI. We present performance results comparing MPI using
SMARTMAP to the existing MPI transport layer on a quad-core Cray
XT platform.

1 Introduction

Catamount [1] is a third-generation lightweight kernel developed by Sandia
National Laboratories and Cray, Inc., as part of the Sandia/Cray Red Storm
project [2]. Red Storm is the prototype of the Cray XT series of massively
parallel machines. Recently, Catamount was enhanced using a technique called
SMARTMAP – Simple Memory of Address Region Tables for Multi-core Aware
Programming. SMARTMAP allows the processes running on a compute node as
part of the same parallel job to efficiently read and write each other’s memory.
Unlike POSIX shared memory, SMARTMAP allows a process to access another
process’ memory by simply manipulating a few bits in a virtual address. This
mechanism has several advantages for efficiently implementing MPI for intra-
node communication.

We have developed a prototype MPI implementation using Open MPI that
is able to use SMARTMAP for intra-node communication. Initial performance
results show that SMARTMAP is able to achieve significant improvement for

⋆ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

intra-node point-to-point and collective communication operations. The follow-
ing section describes the advantages of SMARTMAP compared to existing ap-
proaches for intra-node MPI. Section 3 provides a detailed description of the
implementation of MPI communication using SMARTMAP, which is followed
by a performance comparison between SMARTMAP and the existing transport
for Red Storm. Relevant conclusions and an outline of future work are presented
in Section 5.

2 Background

SMARTMAP takes advantage of the fact that Catamount only uses a single
entry in the top-level page table mapping structure (PML4) on each core of a
multi-core AMD Opteron processor. Each PML4 slot covers 39 bits of address
space, or 512 GB of memory. Normally, Catamount only uses the first entry
covering physical addresses in the range 0x0 to 0x007FFFFFFFFF. The Opteron
supports a 48-bit address space, so there are 512 entries in the PML4.

Each core writes the pointer to its PML4 table into an array at core 0 startup.
Each time the kernel enters the routine to start a new context, the kernel copies
all of the PML4 entries from every core into every other core. This allows every
process on a node to see every other process’ view of the virtual memory at an
easily computed offset in its own virtual address space. The following routine
can be used by a process to manipulate a “local” virtual address into a “remote”
virtual address on a different core:

static inline void *remote_address(unsigned core, void *vaddr)

{

uintptr_t addr = ((uintptr_t) vaddr) & ((1UL<<39) - 1);

addr |= ((uintptr_t) (core+1)) << 39;

return (void*) addr;

}

SMARTMAP also takes advantage of Catamount’s physically contiguous ad-
dress space mapping and the fact that the address mappings are static. Unlike
traditional UNIX-based operating systems, Catamount determines the mapping
from virtual to physical addresses when a process is created and the mapping
is never changed. Because each process from the same executable will have the
same virtual address mapping, the location of variables with global scope will
be identical across all of the processes – both on node and off node.

There is much previous work on using shared memory for intra-node MPI
communications [3–5]. The traditional approach is to use a POSIX shared mem-
ory to allocate a region of memory that is shared between communication pro-
cesses on a node. This memory is divided up among the processes and message
queues are built inside the region. In order to send a message, the sender copies
data into the shared region and the receiver copies it out. Other approaches
that use only a single copy have been implemented and studied. One such im-
plementation is a Linux kernel module that handles re-mapping of user memory

pages into kernel space so that the operating system can do a single memory
copy between processes [6]. Another approach is to have an intelligent or pro-
grammable network interface perform a single copy between processes on the
same node. A comprehensive analysis of the different approaches for intra-node
MPI communication was presented in [7].

Both of these approaches are currently used for the MPI implementation on
Red Storm using the Portals data movement layer [8]. There are two different
implementations of Portals available on Red Storm. The default implementation
interrupts the operating system to service the network. For intra-node transfers,
the operating system simply copies data between the processes. This approach
is much like the Linux kernel module, except that Catamount’s static memory
mapping avoid having to do any re-mapping of pages. For larger messages, it
is more efficient for the OS to use the SeaStar [9] network interface to perform
the copy. In the second implementation of Portals, all network processing is
performed on the SeaStar. Therefore, all intra-node transfers must go through
the network interface.

The simplified memory model of Catamount means that there is no regis-
tration overhead, no system call, and no setup or teardown time necessary for
one process to directly move data into another process. In addition, there is no
serialization of processes through the operating system. Processes are free to
move data without any OS involvement. Relative to using an intelligent network
adapter, there is no need to have data traverse a I/O bus and there is no seri-
alization of requests through the network interface. There is no synchronization
mechanism needed to transfer large messages. Our current implementation has
a single protocol for moving data. Since data only moves when both sender and
receiver have initiated communication, there are no unexpected messages and
no protocols needed to distinguish between the various MPI point-to-point send
modes. We are able to achieve low latency, high throughput, significantly in-
creased small message rate, overlap of computation and communication, and we
are able to support both the active and passive MPI-2 one-sided functionality.
Our approach is much simpler in term of resource allocation and management.
For example, we are not constrained by a shared resource, such as how to best
divide up shared memory regions between control and data.

In addition to these benefits, SMARTMAP allows for additional capabilities
that existing approaches do not. For example, non-contiguous data transfers can
simply be copied directly from sender to receiver with no intermediate copies or
packing/unpacking. Collective operations can operate directly on the buffers in-
volved in the communication. In particular, reduction operations can operate di-
rectly on the buffer in-place at the root of the operation. Using MPI IN PLACE,
copying can be avoided altogether.

3 Prototype Implementation

Catamount supports multiple cores by running in virtual node mode, where each
core is treated as a node that runs a process in the parallel job. The memory

on a single physical node is divided evenly among the available cores. When
a process is started, the parallel runtime system is responsible for setting the
following values in the process’ address space:

– number of processes in the job (my nnodes)
– global rank of the process (my rank)
– number of active cores on the node (my vnm degree)
– core rank on the node (my core)

We then use these values to determine a global rank to core rank mapping
and a core rank to global rank mapping. First, we allocate an array for the
global rank to core rank mapping and initialize all entries to -1. We then allocate
an array for the core rank to global rank mapping. We take advantage of the
SMARTMAP capability to determine the core rank to global rank mapping.
Each core loops from 0 to my vnm degree. If the loop variable is equal to the
local core’s rank, it fills in the core rank to global rank mapping with its global
rank. If the loop variable is not the process’ core rank, it accesses the my rank

value on the other core and fills in the array with this value. At this point, we
can use this array to set the corresponding values in the global rank to core rank
array to the appropriate values.

Each process has a single queue for posted receives and a queue per core for
posted sends. These queues are doubly-linked lists. Each queue element contains:
buffer address, local source rank, buffer length, context id, tag, request address,
and completion flag.

In order to send a message to another core on the same node, we first check
the global rank to core rank mapping to discover whether the destination rank
is a local process. If it is, we check the destination core to see if the message
is being sent to the sending process. If so, we traverse the posted receive queue
looking for a match. If the message is destined for a different core on the same
node, we simply pop a queue element off of a stack, fill in the contents based on
the send request, and enqueue it on the send queue for that particular core. If
the send is blocking, we then call into the progress routine, which is described
in detail below.

When posting a receive, we check to see if the posted receive queue is cur-
rently empty. If it is, we can check for a match right away. In order to check
for a match, we get the address of our core’s send queue in our address space.
Because this virtual address is identical across all of the processes on the node,
we can easily use SMARTMAP to get the address of this queue in the other pro-
cess’ address space. If the source of the receive is specified, we get the address
of our send queue in the other process’ address space and proceed to traverse
this queue looking for a matching send queue entry. Because the pointers are
local to the destination process, every next pointer needs to be converted to a
remote pointer to traverse the queue. When a match is found, the start address
of the send buffer is converted to a remote pointer and the send buffer is copied
from the sending process’ memory into the local receiving process’ memory. We
then set the completion flag of the send queue element in the sending process’

memory. If the source of the receive is MPI ANY SOURCE, we simply traverse our
send queue in all of the other process’ address space looking for match. If our
posted receive queue is not empty, we simply pop a queue element off of a stack,
fill in the contents, and enqueue it. We then call into the progress function to
see if any outstanding requests have been or can be completed. In order to probe
for an incoming messages, we do the same steps as posting a receive; however,
when a match is found, we simply fill in the appropriate status information.

The progress function first checks to see if any outstanding posted receives
can be completed. It does this in the same way as was just described in the
previous paragraph – traversing our send queue in the other process’ address
space looking for match. After traversing the posted receive queue, the progress
function traverses all of the send queues to see if any of the outstanding sends
have been marked as completed by the other cores. Any send queue elements
that have been marked as completed by the receiving core are dequeued and any
cleanup routine for the request is run.

In this strategy, all queues are managed by the local core, so there are no race
conditions with enqueueing and dequeueing elments. Receives are completed by
the local core, copying any data from the remote core. Sends are completed by
the remote core and dequeued by the local core.

4 Performance Evaluation

The platform used to gather our performance results is a Red Storm development
system that contains 2.2 GHz quad-core Opterons. Our prototype implementa-
tion was done using Open MPI. Open MPI already had support for Portals on
the Cray XT, using either a path that does matching inside the MPI library
(BTL) or one that does matching inside Portals (MTL). See [10] for a complete
discussion of these two approaches. We also compare results to the Cray MPI
implementation, which is an modified version of MPICH2.

We used the Intel MPI Benchmark Suite (IMB) version 2.3 to measure point-
to-point and collective communication performance. In order to characterize
small message rate, we used the Ohio State message rate benchmark that has
been modified by PathScale (now Qlogic).

Since we are interested in intra-node communication, all of our results are
from a single quad-core node. We limited our measurements to the interrupt-
driven version of Portals because it is more efficient at intra-node transfers. The
ability to have the operating system perform a copy between processes is more
efficient than having the SeaStar adapter perform the copy. Due to limitations of
the SeaStar, send operations must go through the OS, so in addition to serializing
requests through a slower network interface, requests must also be serialized
through the OS.

Figures 1(a) and 1(b) show ping-pong latency and bandwidth respectively.
SMARTMAP is able to achieve a zero-byte latency of 520 ns, while Cray’s MPI
achieves 2.98 µs. SMARTMAP’s bandwidth peaks at more than 9.3 GB/s, while
the MTL in Open MPI is able to achieve nearly 5.8 GB/s. This difference is

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Message size (bytes)

ompi−btl

ompi−mtl

mpich2

ompi−smap

(a) PingPong Latency

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+06 1e+07

M
B

/s

Message size (bytes)

ompi−btl

ompi−mtl

mpich2

ompi−smap

(b) PingPong Bandwidth

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Message size (bytes)

ompi−btl

ompi−mtl

mpich2

ompi−smap

(c) Exchange

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Message size (bytes)

ompi−btl

ompi−mtl

mpich2

ompi−smap

(d) Sendrecv

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Message size (bytes)

ompi−btl

ompi−mtl

mpich2

ompi−smap

(e) Broadcast

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Message size (bytes)

ompi−btl

ompi−mtl

mpich2

ompi−smap

(f) Reduce

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Message size (bytes)

ompi−btl

ompi−mtl

mpich2

ompi−smap

(g) Allreduce

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Message size (bytes)

ompi−btl

ompi−mtl

mpich2

ompi−smap

(h) Alltoall

Fig. 1: IMB Results

likely due to the extra serialization through the OS and overhead incurred by
having the OS perform the memory copies.

Figures 1(c) and 1(d) show the performance of four-process exchange and
sendrecv operations respectively. These results again show that the impact of
serialization worsens as all four cores are attempting to exchange message simul-
taneously.

Figures 1(e) and 1(f) show the performance of four-process broadcast and
reduction collective operations. The SMARTMAP broadcast is less than 1 µs
out to a 1024-byte message size, at which point the others are all more than
12 µs. The reduce operation shows a similar performance differential.

We conclude IMB performance results with allreduce and alltoall perfor-
mance in Figures 1(g) and 1(h). These results again demonstrate the effectiveness
of using shared memory when all processes are communicating simultaneously.
The alltoall results are particularly dramatic, especially at larger message sizes.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

1 10 100 1000 10000 100000 1e+06 1e+07

M
e
s
s
a
g
e
s
/S

e
c
o
n
d

Message Size (Bytes)

mpich2

ompi−btl

ompi−mtl

ompi−smap

(a) One pair

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

1 10 100 1000 10000 100000 1e+06 1e+07

M
e
s
s
a
g
e
s
/S

e
c
o
n
d

Message Size (Bytes)

mpich2

ompi−btl

ompi−mtl

ompi−smap

(b) Two pairs

Fig. 2: Message Rate

Figures 2(a) and 2(b) show message rates for two process and four processes
respectively. SMARTMAP is able to achieve nearly 2 million messages per second
for two processes and over 3 million messages per second when two pairs of
processes are exchanging messages. Performance for the others actually decreases
when increasing from two to four processes.

5 Conclusion

The SMARTMAP capability in the Catamount lightweight kernel is able to de-
liver significant performance improvements for intra-node MPI point-to-point
and collective operations. It is able to dramatically outperform the current ap-
proaches for intra-node MPI data movement.

There is much work left to do to fully utilize the SMARTMAP capability
for MPI. First, because the Portals data movement layer encapsulates the MPI

posted receive queue, the complexity of handling MPI ANY SOURCE receives
is significantly increased. In most other networks, the MPI posted receive queue
exists inside the MPI library, so the atomicity required to handle a non-specific
receive is straightforward. Because Portals contains the posted receive queue for
network transfers (either in the OS or in the network interface) and the MPI
library contains the posted receive queue for intra-node transfers, there is no
mechanism by which atomicity can be enforced. There are two possible choices
for handling MPI ANY SOURCE receives for communicators that are not either
completely on-node or completely off-node. If the request cannot be satisfied by
any current in-progress communication, all current shared memory transfers need
to queued as unexpected messages and the peer processes need to be informed
that all subsequent messages should use Portals rather than shared memory.
Alternatively, the implementation could modify the Portals implementation so
that all matching occurs inside the MPI library, rather than inside Portals. Cray’s
MPI and the Open MPI BTL already support this mode of operation. Either
way – by putting the MPI posted receive queue completely in the network or
completely inside MPI – great care must be taken to avoid race conditions and
to maintain MPI ordering semantics, both in order to satisfy the non-specific
receive and to possibly switch back after it has been completed. We are currently
adapting both the Open MPI Portals MTL and the shared memory BTL to be
able to use SMARTMAP. This will allow us to support both intra- and inter-node
communication and will allow for direct comparisons between SMARTMAP and
the POSIX shared memory approach.

From a complexity standpoint, it is much easier to enhance MPI collective
operations to use the SMARTMAP capability. It is not necessary to handle non-
specific receive operations or non-blocking operations. We can also make use of
direct shared memory for certain operations, like barrier, when incrementing a
shared counter may be more efficient than exchanging messages. We are currently
implementing a collective module in Open MPI to use SMARTMAP directly and
hope to take advantage of the existing hierarchical collective module to make
use of it.

We would also like to use SMARTMAP to handle on-node non-contiguous
data transfers with no intermediate buffering, and there is an opportunity to
enhance the on-node MPI-2 one-sided operations using SMARTMAP as well.

6 Acknowledgments

Trammell Hudson is responsible for the implementation of SMARTMAP in Cata-
mount, which was an outcome of discussions between the author and Kevin Pe-
dretti. This work would also not have been possible without John Van Dyke,
who is responsible for implementing virtual node mode support in Catamount.
The author would also like to thank Sue Kelly and the Cray support staff at
Sandia for assistance with the Red Storm development systems.

References

1. Kelly, S.M., Brightwell, R.: Software architecture of the light weight kernel, Cata-
mount. In: Proceedings of the 2005 Cray User Group Annual Technical Conference.
(2005)

2. Camp, W.J., Tomkins, J.L.: Thor’s hammer: The first version of the Red Storm
MPP architecture. In: In Proceedings of the SC 2002 Conference on High Perfor-
mance Networking and Computing, Baltimore, MD (2002)

3. Buntinas, D., Mercier, G., Gropp, W.: Implementation and evaluation of shared-
memory communication and synchronization operations in MPICH2 using the
Nemesis communication subsystem. Parallel Computing 33(9) (2007) 634–644

4. Buntinas, D., Mercier, G., Gropp, W.: Implementation and shared-memory evalu-
ation of MPICH2 over the Nemesis communication subsystem. In: Proceedings of
the 2006 European PVM/MPI Users’ Group Meeting. (2006)

5. Buntinas, D., Mercier, G., Gropp, W.: Design and evaluation of Nemesis, a scalable,
low-latency, message-passing communication subsystem. In: Proceedings of the
2006 International Symposium on Cluster Computing and the Grid. (2006)

6. Jin, H.W., Sur, S., Chai, L., Panda, D.K.: Limic: Support for high-performance
MPI intra-node communication on Linux. In: Proceedings of the 2005 Cluster
International Conference on Parallel Processing. (2005)

7. Buntinas, D., Mercier, G., Gropp, W.: Data transfers between processes in an smp
system: Performance study and application to mpi. In: Proceedings of the 2006
International Conference on Parallel Processing. (2006)

8. Brightwell, R., Hudson, T., Pedretti, K., Riesen, R., Underwood, K.: Implementa-
tion and performance of Portals 3.3 on the Cray XT3. In: Proceedings of the 2005
IEEE International Conference on Cluster Computing. (2005)

9. Brightwell, R., Hudson, T., Pedretti, K.T., Underwood, K.D.: SeaStar intercon-
nect: Balanced bandwidth for scalable performance. IEEE Micro 26(3) (2006)

10. Graham, R.L., Brightwell, R., Barrett, B., Bosilca, G., Pjesivac-Grbovic, J.: An
evaluation of Open MPI’s matching transport layer on the Cray XT. In: Proceed-
ings of the 14th European PVM/MPI Users’ Group Conference. (2007)

